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‘Guided dee | Simuldﬁon and Visualization by
a Semianalytical Finite Element Method

by Takahiro Haya_shi" and Joseph L. Rose*

ABSTRACT ,
Simulation and visualization of guided wave propagation can be very
useful in both educational and research studies. However, even with the
tremendous computational power available today, calculation time and
memory have become major issues due to large calculations corresponding
to the guided wave testing area. To overcome these problems, we employ a
semianalytical finite element inethod for simulation of guided waves ina

7 iplate and a pipe. Two major characteristics of a guided wave, dispersion
* and multimode existence, are demonstrated in visualization results. More-

over, guided wave propagation in a pipe is discussed for three cases: ax-
isymmetric guided modes in a straight pipe; focusing effect due to tuning
time delays and amplitudes; and axisymmetric input for a pipe with an
elbow.

Keywords: guided wave, simulation, visualization, semianalytical finite
element method.

INTRODUCTION

Background
Since guided waves propagate over long distances by tuning

. modes and frequency appropriately, guided wave testing has excel-

lent overall discontinuity detection potential. However, the peculiar
characteristics of multimode existence and dispersion can make
wave mechanics complex and analyses difficult. Simulation and vi-
sualization of guided wave propagation can therefore play an im-
portant role in both educational and research studies of discontinu-
ity detection. :

When lamb wave excitation methods in a plate are considered,
for example, transducer geometries such as the incident angle and
diameter of an angle beam transducer or the element number and
spacing width of a comb type transducer must be determined. De-
sign parameters are based on phase velocity and wavelength deter-
mined from the material’s structural geometry and properties. Top-
ics in utilizing dispersion curves have been presented in many
textbooks (Viktrov, 1967; Achenbach, 1984; Kino, 1987; Auld, 1990;
Graff, 1991; Rose, 1999) and have become commonplace during this
past decade. Despite the detailed and elaborate explanations with
equations and illustrations, guided wave mechanics are still com-
plex. Guided wave simulation and visualization is helpful in the
understanding and appreciation of such complicated wave me-
chanics.
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Guided wave interaction with discontinuities:or elbows, whids
are not yet fully theoretically clarified; has become ctfucial in plate
and pipe testing. Wave motion of flexural: modes excited by -a-par-
tial loading on a pipe, for example, are complex but quite useful:
Guided wave simulations and visualizations reveal such guided. -
wave mechanics principles and provide new data acquisition'antd .
analysis approaches to nondestructive-testing. v

Visualization of ultrasonic wave propagation ira solid was ex-
perimentally-cam'ed out by several investigators. Photographs of
ultrasonic wave propagation in a glass plate using dynamic pho-
toelasticity are shown in Zhang et al. (1988) and Li and Negishi
(1994). For pioneering efforts on numerical simulation and visual-
ization, see Harumi (1986) and Yamawaki and Saito (1992), who
calculated and visualized bulk wave propagation. Now numerical
simulation for guided waves is possible. - :

To carry out guided wave simulation and visualization, wave-
form numerical data are required at many grid points covering the
visualization region. Suppose that an A0 mode of 3 mm/ps
(0.1 in./ ps) at a frequency of 1 MHz is visualized. While the grid
point width needs tobe sufficiently smaller than the wavelength of
3 mm (0.1 in.), a visualization region (in other words, a testing area
in practice) is usually in the several centimeter or meter order. At
Jeast several hundred or thousand grid points are required in the
propagation direction. Two grid points are necessary as a minimm
in the thickness direction and more grid points are necessary for
higher order modes with complicated wave structure. Moreover,
waveform data at each point should consist of a data series with
sufficiently small time steps corresponding to sampling frequency
several times as high as center frequency. Consequently, several
hundred or thousand data are required in the time direction, too.

Recently, such a large caleulation has become feasible with suffi-
cient accuracy to obtain very useful results for NDT by the use of
commercial general purpose software (Demma et al., 2001; Sander-
son and Smith, 2002). On the other hand, specialized techniques for
guided wave calculation such as a hybrid method and-a semiana-
Iytical finite element method have been developed to avoid large
calculation time and memory. In the hybrid technique, semiinfinite
regions are covered by the normal expansion theory and an arbi-
trary shape region between two semiinfinite regions, suchas a
crack region, is calculated by the finite element method or bound-
ary element method. Since the number of nodes in finite element
method or boundary element method regions is related to calcula-
tion tire; hybrid methods with a small finite element methed or
boundary element method region require much less calculation

__time. This technique s efficient for caleulations of guided waves in

aplateand ina straight pipe where wave motions in semiinfinite
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regions can be expressed by the normal expansion theory. (See Cho
and Rose [1996] for the hybrid boundary element method, Al-Nassar
[1991] for the hybrid finite element method and Ditri and Rose
[1992] for a pipe issue.) In the semianalytical finite element method,
subdivisions in the propagating direction of the guided waves are
not needed due to the use of orthogonal functions in the propagat-
ing direction. Reducing one finite element method dimension en-
ables us to calculate guided wave propagation characteristics with
faster speed and less memory. This technique is feasible for guided
waves in a pipe and in a bar with an arbitrary cross section, such as
a rail, as well as for lamb waves in a plate. (See detailed studies for
lamb wave caleculation in Liu and Achenbach [1995], Hayashi et al.
[2002], Gal4n and Abascal [2002), Zhuang et al. [1999], Hayashi et
al. [in press (a)] for pipe and Taweel et al. [2000] and Hayashi et al.
[in press (b)] for a bar with an arbitrary cross section.)

In this paper, simulation and visualization of guided wave prop-
agation in a plate and a pipe are carried out using the semianalyti-
cal finite element method. Dispersion and multimode existence of
the fundamental lamb modes are discussed. Moreover, wave me-
chanics in a straight pipe and a pipe with an elbow are visualized.

LAMB WAVE SIMULATION

In the semianalytical finite element method, the cross section is
divided only in the thickness Y direction. Waves propagating in the
longitudinal X direction are expressed by an orthogonal function
exp (i&x), while nodal displacements and an interpolation function
are used in the Y direction. Governing equations can then be de-
scribed as an eigensystem. Solving the eigensystem gives the wave
numbers and wave structures corresponding to the resonant
modes. Amplitude for each mode can be obtained from boundary
conditions such as incident waveforms and transducer type. Wave-
forms at an arbitrary point are given as a superposition of these
modes just like in normal mode expansion theory. Therefore, calcu-
lation by the semianalytical finite element method can assume an
infinite plate without reflection wall and can deal with modal
analysis. Thus the following calculations, in which a pure lamb
mode propagates with no reflection, can easily be'done.

Figures.1 through 4 show sample lamb waves of the fundamen-

tal symmetric and antisymmetric (S0 and A0) modes that are typi-
cally the most useful modes for NDT. Grid shift and shading repre-
sents displacement at the grid points. Excitation frequency / velocity
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Figure 1 — SO mode propagation (minimal dispersive region) in an
aluminum plate (c, = 6.3 mm/ms [0.25 in.ms], cr = 3.1 mmjus

[0.1 in.{ ys)), showing symmetric wave structure with respect to the
center of the plate cross section and nondispersive wave propagation
where the pulse duration does not vary as the pulse travels to the right.
Grid shift and shading represent the real part of complex amplitude at

the grid point.
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regions are shown by gray circles in the phase and group dispe'r-
sion curves. Figures 1 and 2'show the symmetric compressional
wave structure of the SO mode where the waveform is symmetric
with respect to the center of the plate cross section. Figure 1 shows
the nondispersive characteristic of the SO mode in the frequendy
range indicated in the phase and group velocity dispersion curves.
The total pulse duration varies very little as the pulse travels across
the plate since the components of the waveform travel with about
the same phase and group velocities. Figure 2 shows the increase in
total pulse duration as the travels across the plate. This occurs
because of the dispersive acter of wave propagation at that par-
ticular frequency. Since the pulse contains various frequency com-
ponents and phase velocity is a function of frequency, the severe
slope in the dispersion curves at the frequency selected leads to
dispersion, hence pulse spreading. The propagation velocity of
the center of the expanding pulse is equal to the traditional group
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Figure 2 — S0 mode propagation (dispersive region) in an aluminum
plate, showing the characteristic of dispersion where the pulse duration
becomes longer as the pulse travels to the right.
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Figure 3— A0 mode propagation (nondispersive region) in an

. aluminum plate, showing antisymmetric wave structure with respect to

the center of the plate cross section and nondispersive wave
propagation. :
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Figure 4 — Multimode propagation of SO and A0 modes in an
aluminum plate, showing that two possible modes are excited
simultaneously, but separate as they travel across the plate.

velocity that is derived from the actual phase velocity value and
slope in the dispersion curves. Figure 3 shows the antisymmetric
wave structure and nondispersive character of wave propagation
of the A0 mode at this particular frequency. Figure 4 shows the mul-
timode existence of the A0 and S0 modes where the two modes sep-
arate as they travel in the material since they have different phase
and group velocities. All of these four examples are predictable
phenomena from phase and group dispersion curves. However,
lamb wave simulation and visualization are very helpful to our un-
derstanding,.
For more studies on lamb wave calculation, see Hayashi and
Endoh (2000) and Hayashi et al. (2000) for animations of lamb wave
eneration mechanics and Datta et al. (1988), Guo and Cawley
(1993), Liu and Achenbach (1995) and Hayashi and Kawashima
(2002) for wave propagation in a layered plate.

. .GUIDED WAVES IN A PIPE

Calculations of axisymmetric mode propagation with no valida-
tion in the circumferential 8 direction are considered a two dimen-
sional problem in the thickness r and longitudinal Z directions.
However, three dimensional calculations are inevitably required for
nonaxisymmetric mode propagation. In a semianalytical finite ele-
ment method for guided waves in a pipe, the use of orthogonal
function exp (inB) in the circumferential direction and exp (i€z) in
the longitudinal direction leads to an eigensystem; then, displace-
ments and stresses can be obtained at each time (frequency) step as
in the lamb wave calculation.

Figure 5 shows wave propagation when axisymmetric normal
loading is applied on the left end of a straight pipe with an outer di-
ameter of 88 mm (3.5 in.) and thickness 5 mm (0.2 in.). The shift of
the grid point represents the absolute value of complex amplitude.
Gray circles in the dispersion curves of Figure 6 represent the fre-

quency range of the applied dynamic loading. In this frequency -

range, axisymmetric modes consist of longitudinal modes L(0, 1)
and L(0, 2) and a torsional mode T(0, 1), but since these waves are
excited by the normal loading on the surface of the pipe, the tor-
sional mode, a type of shear wave, is ot excited. Two propagating
modes with different velocities are shown in the visualization re-
sults as seen in the group velocity dispersion curves; the faster one
being L(0, 2) mode and the slower one L(0, 1). Similar to lamb wave
propagation in Figure 4, the two modes are separate as they propa-
gateto theright. : "
Reflections from discontinuities could be simulated and vigu-
alized by performing the semianalytical finite element method.

Figure 5 — Axisymmetric guided wave in a straight pipe, showing two
possible axisymmetric waves with different velocities. Grid shift and
shading represent the absolute value and the real part of the complex
amplitude at the grid point, respectively.
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Figure 6 — Dispersion curve for a steel pipe. Outer diameter and
thickness are 88 mm (3.5 in.) and 5 mm (0.2 in.), respectively. Bold
lines represent all possible longitudinal modes in this frequency range.
Circles show excitation regions for the simulation in Figure 5.
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Partial loading responsible for nonaxisymmetric flexural wave
propagation in the pipe could also be studied. Figure 7 presents one
example of flexural mode studies demonstrating focusing effects in
a straight pipe (Hayashi et al,, in press (a); Rose, 2002). Using time
delays and amplitudes predetermined by a focusing algorithm (Li
and Rose, 2001), flexural mode focusing can be seen at the designat-
ed focal point in a straight pipe at 400 mm (15.7 in.). Some other
modes are also shown in the pipe.

. LO2yF(n2) 1}0.1)#(».1)

Figure 7 — Guided wave focusing with time delays and amplitudes
controlled independently by eight angle beam transducers. Time delays
and amplitudes are determined for focusing at 400 mm (15.7 in.) away
from transmitters by the focusing algorithm. Circumferential profiles
are shown:in the circle charts. .

Elbow testing and pipe testing beyond the elbow have become
major issues due to their complex wave mechanics, such as mode
conversion at the elbow and subsequent nonaxisymmetric wave
propagation.. Recently, many experimental and practical work ef-
forts have been completed (Alleyne and Cawley, 1997; Kwun and
Dynes, 1998; Li and Rose, 2001) in which discontinuity detection
potential using guided waves is presented. More theoretical and
numerical studies are necessary to use guided waves efficiently and
to improve guided wave testing. The semianalytical finite element
method could also be used to study guided wave calculations in a
pipe with an elbow. Figure 8 shows axisymmetric input and subse-
quent nonaxisymmetric wave propagation beyond the elbow re-
gion. As expected, the axisymmetric wave breaks up at the elbow
and very complicated guided waves propagate beyond the elbow.
This creates an inefficiency in pipe testing using axisymmetric guid-
ed waves. The semianalytical finite element method-could be used
to study ways of generating axisymmetric waveforms and focusing
effect beyond the elbow region, perhaps by utilizing a phased array
input of partial loading segments around the circumference.

CONCLUDING REMARKS

Simulation and visualization of guided wave propagation in a
plate and a pipe were carried out using a semianalytical finite ele-
ment method. Visualization results of lamb wave propagation of
the fundamental modes explain lamb wave structure, dispersion
and multimode existence very well. These kinds of visualization re-
sults are very helpful to our understanding of lamb wave mechan-
ics, which leads to more advanced applications. The semianalytical
finite element method tool can now be used on a variety of new,
useful and practical problems involving guided waves in a straight
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Figure 8 — Axisymmetric wave input in a pipe with elbow, showing
the wave breakup and mode conversion at an elbow and subsequent
nonaxisymmetric wave propagation.

pipe and in a pipe with an elbow, as a result of mode conversion to
flexural modes. ' :
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